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5.1. Physics of heat transfer 
The Earth’s interior is essentially hot and characterized by spatially heterogeneous thermal 

structures. Since lithological materials with higher temperature generally have lower density due to 
their thermal expansion, the thermal heterogeneity leads to regional buoyancy, and subsequent 
dynamic motions within the Earth, including slab subduction, plume ascent, and dynamo in the outer 
core. To consider these problems, it is highly required to understand the heat transfer properties of the 
Earth’s constituents. 

 

1. Classification of heat transfer mechanisms 
1.1 Conductive heat transfer  

Conductive heat transfer is equivalent to heat flows along the temperature gradient between 
contacting two bodies. This can be also interpreted as energy transfer by the propagation of atomic 
vibration because the vibration is more vigorous at higher temperature (T). In this case, the carrier 
particle of the energy is phonon. The most important equation to describe this phenomenon is 
Fourier’s law, which is, in one-dimensional situations, expressed as below:  

𝑞𝑞 =  −𝑘𝑘
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (5.1.1) 

where q is the heat flow (transferred heat per unit area and per unit time), k is the thermal 
conductivity, which is independent of the absolute temperature, and x is the distance.   
 

1.2 Radiative heat transfer  

Radiative heat transfer is the energy transfer through emitted light from a high-T body. In this 
case, the carrier particle of the energy is photon. This process, namely thermal radiation, is described 
by Stephan-Boltzmann’s law (See Section 2 for details). 

 

1.3 Convective heat transfer  

Convective heat transfer is different from the two mechanisms above in that it is accompanied by 
the movement of high-T body. Thermal structure of a given material in completely convective 
conditions is adiabatic. For thermodynamic properties in such a situation, please refer to the section 
1.5: Adiabat.  

 

2. Heat transfer in space 
Before considering heat transfer in lithological materials, I first describe radiative heat transfer in 

‘space’ or vacuum (i.e. thermal radiation). When a single high-temperature body is located in space, 
electromagnetic wave is emitted from the body to reach thermal equilibrium. This process follows the 
Stefan-Boltzmann law as below: 

𝜀𝜀 =  𝜎𝜎𝑑𝑑4 (5.1.2) 

where ε is the total energy of electromagnetic wave emitted from a black body, and σ is the Stefan-
Boltzmann constant (5.670367 × 10–8 kg s–3 K–4). This equation shows that the total energy of the 
emitted electromagnetic wave is proportional to the fourth power of temperature.  

Then, I discuss heat transfer between parallel surfaces A and B in space. Since energies emitted 
from the individual surfaces per unit area per time (qA and qB) are expressed as qA = σTA

4 and qB = 
σTB

4 when temperatures of them are respectively TA and TB, the net heat flow from the surface A to B 
(q) is: 
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𝑞𝑞 =  𝑞𝑞𝐴𝐴 − 𝑞𝑞𝐵𝐵 =  𝜎𝜎𝑑𝑑𝐴𝐴4 − 𝜎𝜎𝑑𝑑𝐵𝐵4  

Therefore, if TA and TB are similar values (as TAB), q is approximated by a simpler equation as below: 

𝑞𝑞 =  𝜎𝜎(𝑑𝑑𝐴𝐴4 − 𝑑𝑑𝐵𝐵4) 
=  𝜎𝜎(𝑑𝑑𝐴𝐴2 + 𝑑𝑑𝐵𝐵2)(𝑑𝑑𝐴𝐴2 − 𝑑𝑑𝐵𝐵2) 

=  𝜎𝜎(𝑑𝑑𝐴𝐴2 + 𝑑𝑑𝐵𝐵2)(𝑑𝑑𝐴𝐴 + 𝑑𝑑𝐵𝐵)(𝑑𝑑𝐴𝐴 − 𝑑𝑑𝐵𝐵) 
≈  𝜎𝜎 × 2𝑑𝑑𝐴𝐴𝐵𝐵2 × 2𝑑𝑑𝐴𝐴𝐵𝐵 × (𝑑𝑑𝐴𝐴 − 𝑑𝑑𝐵𝐵) ∝  𝜎𝜎𝑑𝑑𝐴𝐴𝐵𝐵3 × ∆𝑑𝑑 

(5.1.3) 

where ΔT is the difference of the temperatures of two surfaces (TA – TB). This equation indicates that 
the heat flow is proportional to the temperature difference and temperature cubed. Here it should be 
noted that, in this case, the heat flow is independent from the distance between the individual surfaces. 
This feature is completely different from that of conductive heat transfer. Specifically, Fourier’s law 
shows the dependency of heat flow on the gradient of temperature, which implies the distance is 
required to describe the phenomenon. This comparison suggests that there is a specific mechanism to 
cause such distance-dependency of the heat flow in the case of conductive heat transfer. 

 

3. Thermal diffusion 
In this section, I describe fundamentals of thermal diffusion by focusing on a thin plate with 

thickness 𝛿𝛿x and area S (Figure 1). In this case, the coordinates of left and right sides of the plate can 
be respectively set as x and x + 𝛿𝛿x. This definition leads to the following expression of heat flows at 
both sides of the plate: heat flow from the left side into the plate is expressed as q(x); and heat flow 
from the plate to the right side is expressed as q(x + 𝛿𝛿x). Therefore, the increase in thermal energy in 
the plate per unit time (Q) can be expressed as below: 

𝑄𝑄 =  𝑆𝑆{𝑞𝑞(𝑑𝑑) − 𝑞𝑞(𝑑𝑑 + 𝛿𝛿𝑥𝑥)} 

=  −𝑆𝑆 �
𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑
�
𝑡𝑡
𝛿𝛿𝑥𝑥 

=  −𝛿𝛿𝑥𝑥𝑆𝑆 �
𝜕𝜕
𝜕𝜕𝑑𝑑
�
𝑡𝑡
�−𝑘𝑘 �

𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑
�
𝑡𝑡
�      ∵ Fourier′s law 

=  𝑘𝑘𝛿𝛿𝑥𝑥𝑆𝑆 �
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑑𝑑2

�
𝑡𝑡
 

(5.1.4) 

From this equation, I derive the thermal diffusion equation. First, increase rate of the temperature 
at a given position x, or (𝜕𝜕T/𝜕𝜕t)x, is expressed as below: 

�
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕
�
𝑥𝑥

=
𝑄𝑄

𝜌𝜌𝜌𝜌𝛿𝛿𝑥𝑥𝑆𝑆
  

where C is the specific heat per weight. Then, by substituting the equation 5.1.4 for Q, 

�
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕
�
𝑥𝑥

=
1

𝜌𝜌𝜌𝜌𝛿𝛿𝑥𝑥𝑆𝑆
× 𝑘𝑘𝛿𝛿𝑥𝑥𝑆𝑆 �

𝜕𝜕2𝑑𝑑
𝜕𝜕𝑑𝑑2

�
𝑡𝑡
 

=
𝑘𝑘
𝜌𝜌𝜌𝜌

�
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑑𝑑2

�
𝑡𝑡
 

(5.1.5) 

This is the thermal diffusion equation. The coefficient k/ρC is called thermal diffusivity, and often 
expressed by using the Greek letter κ. 
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Fig. 1. Schematic diagram of the thin plate.  

 

4. Heat flow and temperature change with time 
The equation of thermal diffusion mentioned above denotes the relationship between the 

temperature heterogeneity, heat flow, and temporal changes of temperature at each point; in other 
words, once given a certain thermal profile, one can calculate its time evolution. In this section, I 
mention four examples of spatial thermal distributions and subsequent heat flows, and temperature 
changing rates. 

4.1 Homogeneous temperature  

The first example is the case where the temperature is homogeneously high (Figure 2). In this 
case, because the thermal gradient is zero at every point of the profile, heat flows are calculated to be 
zero. This implies that there are no temperature changes at any points. 

 

 
Fig. 2. Relationship among the temperature distribution (left), heat flows (center), and temperature 
changing rates (right) with a homogeneous thermal profile. 

 

4.2 Linear temperature gradient  

The second example is the case where temperature linearly changes according to the distance 
(Figure 3). In this case, because the thermal gradient is constant at every point of the profile, heat 
flows are calculated to be constant value (in the example depicted by Figure 3, 25 J m–1K–1). 

https://en.wikipedia.org/wiki/Time_evolution
https://en.wikipedia.org/wiki/Linear_function


4 
 

However, because the gradient of heat flows is always zero, there are still no temperature changes at 
any points. 

 

 
Fig. 3. Relationship among the temperature distribution (left), heat flows (center), and temperature 
changing rates (right) with a linear thermal profile. 

 

4.3 Parabolic temperature distribution  

The third example is the case where the temperature–distance curve is expressed by a parabolic 
function (Figure 3). In this case, because the thermal gradient is expressed by a linear function of the 
distance, heat flows are also expressed as a linear function. Notably, heat flow decreases to zero to the 
bottom (extremum) of the temperature–distance curve. This implies that temperature increases 
uniformly at every points. 

 

 
Fig. 4. Relationship among the temperature distribution (left), heat flows (center), and temperature 
changing rates (right) with a parabolic temperature distribution. 

 

4.4 Varying curvature with position  

Finally, I describe more general cases where the curvatures of the temperature–distance curve are 
diverse (Figure 5). Since the heat flow is a linear function of the thermal gradient, and because the 
temperature changing rate is a linear function of the second derivative of temperature (i.e. a linear 
function of gradients of the heat flow), the heat flow increases (or decreases) more significantly with 
increasing (or decreasing) curvature of the temperature distribution. Therefore, temperature increases 
more rapidly with increase of the curvature of the temperature distribution. 
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Fig. 5. Relationship among the temperature distribution (left), heat flows (center), and temperature 
changing rates (right) with a thermal profile whose curvature changes. 
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